데이터분석2016.06.08 17:33

7일차네요!!!

저번의 Rossman 가게 마케팅 분석 3번째로 이어서 진행을 하는군요 이번 차수에서는 끝을 봐야 또 새로운 스크립트를 맛볼텐데.. 


저번까지 박스플롯으로 학교 휴일이냐 아니냐에 따라서 Rossman 가게들의 판매 실적을 보았구요.

이번에는 이어서 ggplot으로 Sales & Customers가 0 이 아닌 train 데이터를 가지고  scatter plot을 그려보겠습니다.


ggplot(train[train$Sales != 0 & train$Customers != 0],
       aes(x = log(Customers), y = log(Sales))) + 
    geom_point(alpha = 0.2) + geom_smooth()
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.

당연한 얘기지만 역시 Customers가 많아야 Sales가 많다는 건 당연한건가보네요. 마치 y=x같은 그래프와 유사한 모습을 보여주네요. 상관분석을 했는데 이렇게 이쁘게 나오면 참 기분이 좋을텐데 여튼 넘어가겟습니다.


이번에는 Promo  행사여부에 따른 판매량 추이를 보죠

ggplot(train[train$Sales != 0 & train$Customers != 0],
       aes(x = factor(Promo), y = Sales)) + 
    geom_jitter(alpha = 0.1) +
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)


그릐고 바로 Customers는 얼마나 끌어들이나도 같이 보죠  -> 바로 전 boxplot과 비교를 할 목적인줄 알았는데 한단계 더 나가네요.. 위의 scatter plot 대신에 box plot으로 Cutomers를 카운트해보네요.


ggplot(train[train$Sales != 0 & train$Customers != 0],
       aes(x = factor(Promo), y = Customers)) + 
    geom_jitter(alpha = 0.1) +
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)


절대적이진 않지만 학교휴무여부보다 프로모션여부가 확실히 판매량 차이가 더 극명하네요  그리고 한번 더 강조합니다. Sales와 Customers가 0인것은 제외를 함으로써 biased될 가능성이 있기 때문이라고 합니다.  판매량은 고객수와 꽤 연관이 있다고 언급했고.. 그런데 여기에서 Promo가 보면 고객수의 차이가 그닥 없죠잉? 즉 뭐냐면  Promo가 결국 온 손님들이 물건을 더 사게 만드는 효과가 있지 더 끌어들이는 효과는 없다는걸 알수가 있죠. Promo의 factor 변수값이 0인 boxplot과 1의 boxplot은 상당히 overlap되니깐요.. Customers는 그닥 변화가 없지만 Sales은 꽤 차이나는걸 보고 우린 알수가 있어야 합니다. 고객별 소비금액을 봅시다!

with(train[train$Sales != 0 & train$Promo == 0], mean(Sales / Customers))
## [1] 8.941128
with(train[train$Sales != 0 & train$Promo == 1], mean(Sales / Customers))
## [1] 10.17896

이게 유로인데요 한 1유로 이상을 더 지갑에서 여는걸 볼수가 있습니다


여기에서 테이블로 가게 오픈여부와 프로모션 여부에 대한 카운팅 테이블을 봅시다.

table(ifelse(train$Sales != 0, "Sales > 0", "Sales = 0"),
      ifelse(train$Promo, "Promo", "No promo"))
##            
##             No promo  Promo
##   Sales = 0   161666  11205
##   Sales > 0   467463 376875

가게들이 문을 닫았을 때 프로모션기간인 경우가 좀 있네요 그리고 가게 문을 열었을 경우 45프로의 가게가 프로모션 진행중이구요

다음은 웃픈 얘기인데 오픈해서 손님이 있어도 판매가 없는 가게가 54곳이나 뽑히네요.

table(ifelse(train$Open == 1, "Opened", "Closed"),
      ifelse(train$Sales > 0, "Sales > 0", "Sales = 0"))
##         
##          Sales = 0 Sales > 0
##   Closed    172817         0
##   Opened        54    844338

그 54개를 자세히 보죠....


# That tends to happen on consecutive days. Some stores even had customers
# (who bought nothing?)
train[Open == 1 & Sales == 0]
##     Store DayOfWeek       Date Sales Customers Open Promo StateHoliday
##  1:   762         4 2013-01-17     0         0    1     0            0
##  2:   232         4 2013-01-24     0         0    1     1            0
##  3:   339         3 2013-01-30     0         0    1     0            0
##  4:   339         4 2013-01-31     0         0    1     0            0
##  5:   259         4 2013-02-07     0         0    1     1            0
##  6:   353         6 2013-03-16     0         0    1     0            0
##  7:   948         4 2013-04-25     0         5    1     1            0
##  8:   589         1 2013-04-29     0         0    1     1            0
##  9:   364         2 2013-05-07     0         0    1     0            0
## 10:   364         3 2013-05-08     0         0    1     0            0
## 11:   681         5 2013-05-10     0         0    1     0            0
## 12:   700         3 2013-06-05     0         0    1     1            0
## 13:   665         5 2013-06-28     0         0    1     0            0
## 14:   665         6 2013-06-29     0         0    1     0            0
## 15:  1039         2 2013-07-09     0         0    1     0            0
## 16:  1039         3 2013-07-10     0         0    1     0            0
## 17:   927         4 2013-08-08     0         0    1     0            0
## 18:   391         3 2013-08-28     0         0    1     1            0
## 19:   663         1 2013-09-02     0         0    1     0            0
## 20:   983         5 2014-01-17     0         0    1     0            0
## 21:   983         6 2014-01-18     0         0    1     0            0
## 22:   623         5 2014-01-24     0         0    1     1            0
## 23:   623         6 2014-01-25     0         0    1     0            0
## 24:    25         3 2014-02-12     0         0    1     0            0
## 25:    25         4 2014-02-13     0         0    1     0            0
## 26:   327         3 2014-03-12     0         0    1     0            0
## 27:   986         2 2014-03-18     0         0    1     1            0
## 28:   850         6 2014-03-29     0         0    1     0            0
## 29:   661         5 2014-04-04     0         0    1     1            0
## 30:  1100         2 2014-04-29     0         3    1     1            0
## 31:  1100         3 2014-04-30     0         0    1     1            0
## 32:  1017         3 2014-06-04     0         0    1     1            0
## 33:  1017         4 2014-06-05     0         0    1     1            0
## 34:    57         2 2014-07-01     0         0    1     1            0
## 35:   925         4 2014-07-03     0         0    1     1            0
## 36:   102         6 2014-07-12     0         0    1     0            0
## 37:   882         3 2014-07-23     0         0    1     0            0
## 38:   887         3 2014-07-23     0         0    1     0            0
## 39:   102         4 2014-07-24     0         0    1     0            0
## 40:   238         4 2014-07-24     0         0    1     0            0
## 41:   303         4 2014-07-24     0         0    1     0            0
## 42:   387         4 2014-07-24     0         0    1     0            0
## 43:    28         2 2014-09-02     0         0    1     1            0
## 44:    28         3 2014-09-03     0         0    1     1            0
## 45:    28         4 2014-09-04     0         0    1     1            0
## 46:   548         5 2014-09-05     0         0    1     1            0
## 47:   835         3 2014-09-10     0         0    1     0            0
## 48:   227         4 2014-09-11     0         0    1     0            0
## 49:   835         4 2014-09-11     0         0    1     0            0
## 50:   357         1 2014-09-22     0         0    1     0            0
## 51:   708         3 2014-10-01     0         0    1     1            0
## 52:   699         4 2015-02-05     0         0    1     1            0
## 53:   674         4 2015-03-26     0         0    1     0            0
## 54:   971         5 2015-05-15     0         0    1     0            0
##     Store DayOfWeek       Date Sales Customers Open Promo StateHoliday
##     SchoolHoliday
##  1:             0
##  2:             0
##  3:             0
##  4:             0
##  5:             0
##  6:             0
##  7:             0
##  8:             0
##  9:             0
## 10:             0
## 11:             0
## 12:             0
## 13:             0
## 14:             0
## 15:             0
## 16:             0
## 17:             1
## 18:             1
## 19:             1
## 20:             0
## 21:             0
## 22:             0
## 23:             0
## 24:             0
## 25:             0
## 26:             0
## 27:             0
## 28:             0
## 29:             0
## 30:             0
## 31:             0
## 32:             0
## 33:             0
## 34:             0
## 35:             0
## 36:             0
## 37:             1
## 38:             0
## 39:             1
## 40:             1
## 41:             1
## 42:             1
## 43:             1
## 44:             1
## 45:             0
## 46:             1
## 47:             0
## 48:             0
## 49:             0
## 50:             0
## 51:             0
## 52:             0
## 53:             0
## 54:             1
##     SchoolHoliday

가슴 아프지만 우리는 이 가게들을 캐내서 판매부진 아니.. 판매불능의 상황을 따져봅시다...!! 우선 Store의 리스트를 가져와 sales가 0인것들이 많은 순대로 sort를 했네요. 여기에서 sort는 별로 무의미해보이고요 여튼 zeroPerStore의 가게를



zerosPerStore <- sort(tapply(train$Sales, list(train$Store), function(x) sum(x == 0)))
hist(zerosPerStore,100)

여기에서 histogramd 한참 봤습니다 ㅜ.ㅜ  Exploratory Analysis의 경우는 왔다갔다 합니다. 여튼 위에 zeroStore에서 구한 가게별 문닫는 일수에 대한 데이터를 놓고 보네요. 가게별 판매가 0인 날로 그치는 날수가 제일 많은게 160~200일 동안 장사가 안되는 날이 있네요..  자세히 들여다볼까요?


여기에서는 이 구한 zerosPerStore은 sort가 되어 있죠 default가 ascending order라 판매가 0인 날이 가장 많은 가게들 10개를 가져와봅니다.  그리고 그 가게별로 plot을 찍어보네요 Sales에 대한 ploat을 찍고 보니  특정 구간에 판매량이 0으로 몰린다는겁니다. 중간에 뻥 아니면 시작부분에 뻥

# Stores with the most zeros in their sales:
tail(zerosPerStore, 10)
## 105 339 837  25 560 674 972 349 708 103 
## 188 188 191 192 195 197 240 242 255 311
# Some stores were closed for some time, some of those were closed multiple times
plot(train[Store == 972, Sales], ylab = "Sales", xlab = "Days", main = "Store 972")

plot(train[Store == 103, Sales], ylab = "Sales", xlab = "Days", main = "Store 103")

plot(train[Store == 708, Sales], ylab = "Sales", xlab = "Days", main = "Store 708")

물론 판매량에 있어 0을 안 찍은 가게들도 있고 일요일/휴무일날 오픈해서 판매한 exceptions들도 있다고 합니다. 특히 일요일은 판매가 잘된다고 하네요.. 


ggplot(train[Store == 85], 
       aes(x = Date, y = Sales, 
           color = factor(DayOfWeek == 7), shape = factor(DayOfWeek == 7))) + 
    geom_point(size = 3) + ggtitle("Sales of store 85 (True if sunday)")

ggplot(train[Store == 262], 
       aes(x = Date, y = Sales, 
           color = factor(DayOfWeek == 7), shape = factor(DayOfWeek == 7))) + 
    geom_point(size = 3) + ggtitle("Sales of store 262 (True if sunday)")


그리고 주일별로 한번 판매량을 boxplot찍어보니!!! 일요일은 판매량의 변동성이 꽤 높네요 ㄷㄷㄷㄷ


ggplot(train[Sales != 0],
       aes(x = factor(DayOfWeek), y = Sales)) + 
    geom_jitter(alpha = 0.1) + 
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)


자 이제 train데이터는 그만 잠시 접어두고 주어진 데이터 셋중에 store 즉   가게 자체애 대한 정보를 받았죠. 가게 대장이라고 부를께요.

이데이터를summary()함수를 통해서 살펴보겠습니다.


summary(store)
##      Store         StoreType          Assortment       
##  Min.   :   1.0   Length:1115        Length:1115       
##  1st Qu.: 279.5   Class :character   Class :character  
##  Median : 558.0   Mode  :character   Mode  :character  
##  Mean   : 558.0                                        
##  3rd Qu.: 836.5                                        
##  Max.   :1115.0                                        
##                                                        
##  CompetitionDistance CompetitionOpenSinceMonth CompetitionOpenSinceYear
##  Min.   :   20.0     Min.   : 1.000            Min.   :1900            
##  1st Qu.:  717.5     1st Qu.: 4.000            1st Qu.:2006            
##  Median : 2325.0     Median : 8.000            Median :2010            
##  Mean   : 5404.9     Mean   : 7.225            Mean   :2009            
##  3rd Qu.: 6882.5     3rd Qu.:10.000            3rd Qu.:2013            
##  Max.   :75860.0     Max.   :12.000            Max.   :2015            
##  NA's   :3           NA's   :354               NA's   :354             
##      Promo2       Promo2SinceWeek Promo2SinceYear PromoInterval     
##  Min.   :0.0000   Min.   : 1.0    Min.   :2009    Length:1115       
##  1st Qu.:0.0000   1st Qu.:13.0    1st Qu.:2011    Class :character  
##  Median :1.0000   Median :22.0    Median :2012    Mode  :character  
##  Mean   :0.5121   Mean   :23.6    Mean   :2012                      
##  3rd Qu.:1.0000   3rd Qu.:37.0    3rd Qu.:2013                      
##  Max.   :1.0000   Max.   :50.0    Max.   :2015                      
##                   NA's   :544     NA's   :544


1115개의 가게별로 StoreType / Assortment 같은 구분이 있고 경쟁업체 위치 그리고 경쟁업체 오픈 년월과 Promotion 에대한 추가 정보가 있네요. 프로모션2는 뭐지? 흠흠..

table(store$StoreType)
## 
##   a   b   c   d 
## 602  17 148 348
table(store$Assortment)
## 
##   a   b   c 
## 593   9 513
# There is a connection between store type and type of assortment
table(data.frame(Assortment = store$Assortment, StoreType = store$StoreType))
##           StoreType
## Assortment   a   b   c   d
##          a 381   7  77 128
##          b   0   9   0   0
##          c 221   1  71 220

이렇게 구분 변수 2개는 살펴보았습니다.  넘어가죠!


hist(store$CompetitionDistance, 100)

경쟁업체거리는 있다면 뭐 가까운데 제일 많이 있다라는거죠 거리가 멀수록 경쟁업체가 있어도 없다고 체크하겠죠 뭐 정보관리할때 말이죠..


뭐 이건 년월을 "-"로 묶어서 CompetitoinOpenSince라는 값에 담았습니다. 그리고 2015년 10월 기준으로 오픈한 년수를 구해서 historgram으로 찍어봤을때 보통 20년 이내의 역사를 가지고 있는 가게가 대부분이네요.

# Convert the CompetitionOpenSince... variables to one Date variable
store$CompetitionOpenSince <- as.yearmon(paste(store$CompetitionOpenSinceYear, 
                                               store$CompetitionOpenSinceMonth, sep = "-"))
# One competitor opened 1900
hist(as.yearmon("2015-10") - store$CompetitionOpenSince, 100, 
     main = "Years since opening of nearest competition")


그다음은 promo2가 시작된 이후의 날수를 계산하네요... 이건 머여 날수를 구해서 머하자는건지....넘어가거씁니다. 아마 제가 데이터셋 설명을 다시 봐서 업데이트하든가 해야겠네요.

 Convert the Promo2Since... variables to one Date variable
# Assume that the promo starts on the first day of the week
store$Promo2Since <- as.POSIXct(paste(store$Promo2SinceYear, 
                                   store$Promo2SinceWeek, 1, sep = "-"),
                             format = "%Y-%U-%u")
hist(as.numeric(as.POSIXct("2015-10-01", format = "%Y-%m-%d") - store$Promo2Since), 
     100, main = "Days since start of promo2")


프로모션 주기구요.

table(store$PromoInterval)
## 
##                   Feb,May,Aug,Nov  Jan,Apr,Jul,Oct Mar,Jun,Sept,Dec 
##              544              130              335              106


이건 프로모션 주기별로 boxplot을 그렸는데 글쎄요 뭐 둘쑥날쑥하네요 프로모션기별마다.

# Merge store and train 
train_store <- merge(train, store, by = "Store")
ggplot(train_store[Sales != 0], aes(x = factor(PromoInterval), y = Sales)) + 
    geom_jitter(alpha = 0.1) + 
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)


그다음으로  store type과 assortment types을 시각분석을 통해 한번 뭔지 보자. 

그래프가 마치 지렁이같이 그려지는건 geom_smooth 때문이고 여튼 factor를 storeType과 assortment type을 넣고 돌려봤더니 뭔가 차이가 확실히 있네요. 


ggplot(train_store[Sales != 0], 
       aes(x = as.Date(Date), y = Sales, color = factor(StoreType))) + 
    geom_smooth(size = 2)
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.

ggplot(train_store[Customers != 0], 
       aes(x = as.Date(Date), y = Customers, color = factor(StoreType))) + 
    geom_smooth(size = 2)
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.

ggplot(train_store[Sales != 0], 
       aes(x = as.Date(Date), y = Sales, color = factor(Assortment))) + 
    geom_smooth(size = 2)
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.

ggplot(train_store[Sales != 0], 
       aes(x = as.Date(Date), y = Customers, color = factor(Assortment))) + 
    geom_smooth(size = 2)
## geom_smooth: method="auto" and size of largest group is >=1000, so using gam with formula: y ~ s(x, bs = "cs"). Use 'method = x' to change the smoothing method.



storetype과 assortment type을 보면 b가 우세하네요. 고객수면이나 판매량측면에서 말이죠!!

그리고 경쟁업체와의 거리는 좀 보면 직관적이지 못합니다. 여기에서 이러네요. 아마 자기 추측에는 다음 경쟁업체와의 거리가 가까운 가게의 경우는 일반적으로 도심안과 같은 이미 붐비는 지역이라 그럴거라고. 그러니 경쟁업체가 몰려있겠죠... 그래서 good bad를 가리기엔 그냥 뭐.cancel out 즉 상쇄된다는 말인듯합니다.

salesByDist <- aggregate(train_store[Sales != 0 & !is.na(CompetitionDistance)]$Sales, 
               by = list(train_store[Sales != 0 & !is.na(CompetitionDistance)]$CompetitionDistance), mean)
colnames(salesByDist) <- c("CompetitionDistance", "MeanSales")
ggplot(salesByDist, aes(x = log(CompetitionDistance), y = log(MeanSales))) + 
    geom_point() + geom_smooth()
## geom_smooth: method="auto" and size of largest group is <1000, so using loess. Use 'method = x' to change the smoothing method.




CompetitionOpenSinceYear값이 없을 경우때문인지 걍 CompetitionOpenSinceYear의 값 존재여부를 가지고 체크한거같습니다. 보시죠. 

ggplot(train_store[Sales != 0],
       aes(x = factor(!is.na(CompetitionOpenSinceYear)), y = Sales)) +
    geom_jitter(alpha = 0.1) +
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA) +
    ggtitle("Any competition?")



별차이가 없어보이는데 우선 뭐.. Sales가 있는경우가 더 높네요. 방금 말한 그런 이유의 연장선인거같습니다.


이 다음은 아주 쪼금남았는데 시간 나면 바로 업데이트하는걸로하고. 마칩니다.

캐글도 뭔가 완전하진 않습니다. 결국 데이터 모델을 만들어내느걸 해야하는데 그런건 안다뤄지고 Exploratory Analysis 단계까지만 공개되는거 같네요.  금주와 다음달부터 빅데이터/통계스터디를 하게 되는데 심화해서 진행되는건 업데이트해서 공유를 하도록 하겠슴니다. 그럼 조만간 업데이트할게요~~

















저작자 표시
신고

'데이터분석' 카테고리의 다른 글

Kaggler's Day #9  (0) 2017.01.12
Kaggler's Day #8  (0) 2016.06.10
Kaggler's Day #7  (0) 2016.06.08
Kaggler's Day #6  (0) 2016.05.31
Kaggler's Day #5  (0) 2016.05.27
Kaggler's Day #3  (0) 2016.05.16
Posted by 억사마
데이터분석2016.05.31 17:23

Google Calendar에 추가한 Goal Alarm이 오질 않네요 여튼 그래서 수동으로 다시 시작합니다. 5일차때 다룬 Rossmann Store Sales 풀이 이어서 나가도록 하겠습니다.  저번에 제공 데이터를 str. summary 등의 함수를 가지고 한번 훑어보았데 train데이터만 보여줬는데 마저 test 데이터도 조회해보죠

summary(test)
##        Id            Store          DayOfWeek          Date           
##  Min.   :    1   Min.   :   1.0   Min.   :1.000   Min.   :2015-08-01  
##  1st Qu.:10273   1st Qu.: 279.8   1st Qu.:2.000   1st Qu.:2015-08-12  
##  Median :20544   Median : 553.5   Median :4.000   Median :2015-08-24  
##  Mean   :20544   Mean   : 555.9   Mean   :3.979   Mean   :2015-08-24  
##  3rd Qu.:30816   3rd Qu.: 832.2   3rd Qu.:6.000   3rd Qu.:2015-09-05  
##  Max.   :41088   Max.   :1115.0   Max.   :7.000   Max.   :2015-09-17  
##                                                                       
##       Open            Promo        StateHoliday       SchoolHoliday     
##  Min.   :0.0000   Min.   :0.0000   Length:41088       Length:41088      
##  1st Qu.:1.0000   1st Qu.:0.0000   Class :character   Class :character  
##  Median :1.0000   Median :0.0000   Mode  :character   Mode  :character  
##  Mean   :0.8543   Mean   :0.3958                                        
##  3rd Qu.:1.0000   3rd Qu.:1.0000                                        
##  Max.   :1.0000   Max.   :1.0000                                        
##  NA's   :11
test[is.na(test$Open), ] # Only store 622
##        Id Store DayOfWeek       Date Open Promo StateHoliday SchoolHoliday
##  1: 10752   622         6 2015-09-05   NA     0            0             0
##  2:  9040   622         1 2015-09-07   NA     0            0             0
##  3:  8184   622         2 2015-09-08   NA     0            0             0
##  4:  7328   622         3 2015-09-09   NA     0            0             0
##  5:  6472   622         4 2015-09-10   NA     0            0             0
##  6:  5616   622         5 2015-09-11   NA     0            0             0
##  7:  4760   622         6 2015-09-12   NA     0            0             0
##  8:  3048   622         1 2015-09-14   NA     1            0             0
##  9:  2192   622         2 2015-09-15   NA     1            0             0
## 10:  1336   622         3 2015-09-16   NA     1            0             0
## 11:   480   622         4 2015-09-17   NA     1            0             0
test$Open[test$Store == 622]
##  [1]  1  0  1  1  1  1  1  1  0  1  1  1  1  1  1  0  1  1  1  1  1  1  0
## [24]  1  1  1  1  1  1  0  1  1  1  1  1 NA  0 NA NA NA NA NA NA  0 NA NA
## [47] NA NA


여기에서 보면 위에 제가 볼드체로 표시한 부분 즉 실제 rows수를 보면 train데이터가 월등히 많네요. 1017209rows에 비해 test데이터는 턱없이 부족하고 그리고 dashboard에 issue로 올라온 것보면 622개의 데이터가 Open 컬럼이 NA로 되어있어 못쓴다라고 올라와있는데요. 하지만 이 row를 못쓰는건 아닙니다.  여기를 보면 아시다시피 Sale라는 컬럼이 닫혀있다면 0일수가 없으니 1로 간주하면 될거 같습니다. 이런걸 data munging이라고도 하는데 저희가 도메인을 파악하고 어떤 이유에서인지 알수 없거나 정리가 안된걸 직접 수정하여 trim처리를 하는 센스는 있어야 합니다.  게다가 테스트 데이터에는 Customers컬럼이 아예 빠져있는걸 알수 있습니다. 사후 데이터이기 때문이라네요 ?


여튼  그래서 아래와 같은 처리 합니다. NA인 녀석들을 싹다!!!!  1로 만들어버립시다


test[is.na(test)] <- 1

위의 문법은 test의 컬럼중 NA를 다 1로 채우는걸로 이해하면 됩니다


그다음에 다시

test[is.na(test$Open), ]
하면 결과가 0이 나올겁니다 테스트 데이터에는 Easter Day나 크리스마스 휴일가 없지만 방학은 44프로나 있네요. 하지만 그에 비해 train data의 18프로만의 방학이 있다는거 뭔가 데이터가 참 bias된것 같습니다. 이 점을 참고해야겠죠??

# Unique values per column
train[, lapply(.SD, function(x) length(unique(x)))]
##    Store DayOfWeek Date Sales Customers Open Promo StateHoliday
## 1:  1115         7  942 21734      4086    2     2            4
##    SchoolHoliday
## 1:             2
test[, lapply(.SD, function(x) length(unique(x)))]
##       Id Store DayOfWeek Date Open Promo StateHoliday SchoolHoliday
## 1: 41088   856         7   48    2     2            2             2
.SD가 여기서 궁금한 분은 이 링크를 보세요. 보면 SchoolHoliday가 test에는 2 train에는 4(부활절, 크리스마스 포함)인 걸 알수가 있네요. 그리고 Store의 각 개수가 1115, 856개 각각 인거도 보시구요~

그리고 아래는 train의 데이터들에 있는 상점들이 test의 상점들을 다 포함하는걸로 볼수 있죠 

# All test stores are also in the train data
sum(unique(test$Store) %in% unique(train$Store)) 
## [1] 856

하지만 반대의 경우는 성립하지가 않네요. 고작 259개만 커버를 하네요 나머지 1115에서 259개를 뺀건 포함을 못한다는 얘기죠?!
# 259 train stores are not in the test data
sum(!(unique(train$Store) %in% unique(test$Store))) 
## [1] 259
그리고 아래는 참 유용한 표현식입니다. factor형일 경우 전체 row에서 %를 알고 싶을때 자주 쓰죠
table(train$Open) / nrow(train) # Percent Open Train
## 
##         0         1 
## 0.1698933 0.8301067
train 데이터의 경우 열려있는경우가 83%나 되는걸 볼수가 있습니다..

table(test$Open) / nrow(test) # Percent Open Test 
## 
##         0         1 
## 0.1456386 0.8543614
테스트 데이터에서도 비슷하게 85%네요

table(train$Promo) / nrow(train) # Percent of the time promo in train
## 
##         0         1 
## 0.6184855 0.3815145
흠 train데이터에서는 프로모션을 38%나 하네요

table(test$Promo) / nrow(test) # Percent of the time promo in test
## 
##         0         1 
## 0.6041667 0.3958333
39프로 역시나 test데이터에서도 유사합니다

table(train$StateHoliday) / nrow(train) # Percent of the time holiday in train
## 
##           0           a           b           c 
## 0.969475300 0.019917244 0.006576820 0.004030637
흠 그리고 State 휴일이 아닌게 97%  당연하죠.. a,b,c는 데이터셋 설명 다시 보시길 ㅋ

table(test$StateHoliday) / nrow(test) # no b and c = no easter holiday and no christmas
## 
##           0           a 
## 0.995619159 0.004380841
핫 여기 보면 test데이터는 뭔가 bias되었네요 확실히.. bc 데이터가 없네요... 아 이게 부활절하고 크리스마스를 bc라고 지칭한건가 싶네요..

table(train$SchoolHoliday) / nrow(train) # Percent of the time school holiday in train
## 
##         0         1 
## 0.8213533 0.1786467
table(test$SchoolHoliday) / nrow(test) # Percent of the time school holiday in test
## 
##         0         1 
## 0.5565129 0.4434871
여기서도 차이가 아까 말한것처럼 발견되죠..... 이건 위에 언급했으니 넘어가겠습니다..ㅎㅎ 
데이터가 뭔가 구린건 없네요. test 데이터의 기간은 2015년 8월 1일부터 2015년 9월 17일 즉 우리 이 과제의 목표는 48일간을 예측해야하는거네요. train데이터의 기간은 2013/1/1~ 2015/7/31 한... 2.5년치의 데이터를 가지고 있다고 보면 되겠네요... 뭔가 흥미진진하죠? 그런데 테스트데이터가 적어서 좀 그렇네요?? 자 봅시다..

plot(train$Date, type = "l")

plot(test$Date, type = "l")
이런거를 plot으로 찍어서 기간을 산정해보기도하는군요 -ㅅ- min max를 plot으로 쉽게 알수 있으니 걍 쓰는가봅니다 --a

아래는 테스트의 unique  store개수가 856 였던거 기억하죠? 그 spread기간동안 데이터가 온전히 다 있나 체크하는고

# As expected all 856 stores to be predicted daily
all(table(test$Date) == 856) 
## [1] TRUE

흠 그다음은 train 데이터에서 특정 컬럼 값 분포를 봅시다. 
Sales라는 컬럼보면 대충 값들이 5000정도에서 맥스 찍고 20000이 되면서 줄어드는게 좌편향 정규분포 비슷하게 그리네요 

hist(train$Sales, 100)

다음은 historgram을 또 그리는데 "가게 문을 안닫았을때의 가게별 평균 sales"를 봅시다.  즉 Store별로  Sales를 평균 낸 데이터를 가지고 다시 히스토그램을 100분위로 나타낸것이다.
아래는 hist와 aggregate를 두개로 split해서 보시면 될듯합니다. 자세한 건 documentation 보면서 이해하는수밖에 없습니다 ^^

hist(aggregate(train[Sales != 0]$Sales, 
               by = list(train[Sales != 0]$Store), mean)$x, 100, 
     main = "Mean sales per store when store was not closed")

그다음은 custormers수의 분포를 봅시다.
hist(train$Customers, 100)



그리고 그다음은 아까 sales를 100분위로 histogram으로 나타낸것과 똑같이 고객수를 나타내보겠습니다.
hist(aggregate(train[Sales != 0]$Customers, 
               by = list(train[Sales != 0]$Store), mean)$x, 100,
     main = "Mean customers per store when store was not closed")

가게 넘버가 500~1000으로 부여된것이 실적이 좋네요 ㅎㅎ

그리고 ggplot으로 이제 뿌릴건데요  boxplot도 안에 껴서 그릴수가있습니다.

학교 휴일이냐 아니냐에 따라서 판매량을 한번 볼게요 

ggplot(train[Sales != 0], aes(x = factor(SchoolHoliday), y = Sales)) +
    geom_jitter(alpha = 0.1) +
    geom_boxplot(color = "yellow", outlier.colour = NA, fill = NA)

box plot으로는 차이가 별로 없고 판매량은 휴일이 아닌경우 가 확실히 더 많네요. 까만영역이 더 높죠?!


후배님께서 술먹자고 가자고 하네요. 후아. 오늘도 여기까지. 아직 반도 안왔네요. 이거 !!  그래도 다음 차에는 확 끝내겠습니다!


































저작자 표시
신고

'데이터분석' 카테고리의 다른 글

Kaggler's Day #8  (0) 2016.06.10
Kaggler's Day #7  (0) 2016.06.08
Kaggler's Day #6  (0) 2016.05.31
Kaggler's Day #5  (0) 2016.05.27
Kaggler's Day #3  (0) 2016.05.16
Kaggler's Day #1  (0) 2016.05.12
Posted by 억사마
데이터분석2016.05.27 16:56

벌써 5번째 Kaggler Day이군요 쨌든 오늘은 가장 kaggle script중에 가장 많은 관심을 받은 script 하나를 들고 왔습니다. 물론 이문제 또한 kaggle competition이 이루어진 문제구요. 


문제 설명을 하자면,, 가게, 프로모션, 그리고 경쟁자 정보를 가지고 판매량을 예측하는 겁니다. Rossman이라는 브랜드가 있나봅니다 여튼 여기서 아마 competition 문제를 의뢰한거 같구요.    이 회사가 머하는 곳이냐면 7개의 유럽 국가에 3000개의 약국을 운영하고 있는 회사입니다. 현재 Rossmann 가게 매니저들은 미리 6주되기까지 그들의 daily 판매량을 예상하는 일을 받았다고 합니다. 가게 판매는 많은 인자 즉 프로모션, 경쟁 업체, 학교, 그리고 주의 휴일, 계절, 지역특성에 등등 많은 인자에 의해 영향을 받고  수천명의 개별 매니저들과 그들의 특정 환경을 토대로 판매량을 예측하는함에 있어 결과의 정확성은 꽤 변동이 클것이라고 합니다.


그래서!! 캐글에서 Rossman은 독일에 있는 1,115개의 약국의 6개월간의 판매량을 예측하는걸 목표로 한다고 하네요? 신뢰할만한 판매 예측은 가게 매니저에게 생산성과 동기부여를 증가시킬수 있는 효율적인 직원 스케쥴을 만들수 있게 해준다고 하네요. Rossmann이 견고한 예측 모델을 만들도록 도와주면서 우리는 그들에게 고객과 그들의 팀에게 무엇이 가장 중요한지 알려주고자 합니다. 


자 문제 설명은 마쳤구요.. 여기 가보면 데이터셋을 확보할수 있습니다.


데이터셋을 보니 


손님 수, 가게 오픈여부, 주휴일, 학교휴일, 가게타입. assortment(무슨 factor중의 하나겠죠?) 그리고 경쟁업체와의 거리, 그리고 가장가까운 경쟁업체의 오픈 년월일. 프로모션, 프로모션2, 프로모션 주기가 주어져있습니다..


과연 이걸로 얻을수 있을까... 궁금하시죠? 그럼 award를 흠 그러니까 1등한분거는 공개가 안되는거 같으니.. 35k달러의 후보가 될뻔 한 소스를 한번 살펴볼까요.....!!!!



탐색전 분석(Exploratory Analysis)을 해보죠!!


사용한 라이브러리 들이 나오고요 data.table을 사용하여 속도를 높였다고 합니다. 특정 해석을 가능케 하기 위해 unmasked data가 중요하다합니다.


library(data.table)
library(zoo)
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(forecast)
## Loading required package: timeDate
## Loading required package: methods
## This is forecast 6.2

저번에는 ggplot을 보았는데 이번엔 ggplot2가 나왔습니다. 그리고 문제에서 주어지는 데이터가 이번엔 아예 test / train 으로 나뉘어져 있군요. 그리고 별도로 store라는 데이터셋이 있어서 가게 대장 정보가 별도로 잇네요.

library(ggplot2)
test <- fread("../input/test.csv")
train <- fread("../input/train.csv")
store <- fread("../input/store.csv")

아래는 입력받은 데이터셋을 간략하게 보기 좋은 함수죠~~

str(train)
## Classes 'data.table' and 'data.frame':   1017209 obs. of  9 variables:
##  $ Store        : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ DayOfWeek    : int  5 5 5 5 5 5 5 5 5 5 ...
##  $ Date         : chr  "2015-07-31" "2015-07-31" "2015-07-31" "2015-07-31" ...
##  $ Sales        : int  5263 6064 8314 13995 4822 5651 15344 8492 8565 7185 ...
##  $ Customers    : int  555 625 821 1498 559 589 1414 833 687 681 ...
##  $ Open         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Promo        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ StateHoliday : chr  "0" "0" "0" "0" ...
##  $ SchoolHoliday: chr  "1" "1" "1" "1" ...
##  - attr(*, ".internal.selfref")=<externalptr>
str(test)
## Classes 'data.table' and 'data.frame':   41088 obs. of  8 variables:
##  $ Id           : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Store        : int  1 3 7 8 9 10 11 12 13 14 ...
##  $ DayOfWeek    : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ Date         : chr  "2015-09-17" "2015-09-17" "2015-09-17" "2015-09-17" ...
##  $ Open         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Promo        : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ StateHoliday : chr  "0" "0" "0" "0" ...
##  $ SchoolHoliday: chr  "0" "0" "0" "0" ...
##  - attr(*, ".internal.selfref")=<externalptr>
str(store)
## Classes 'data.table' and 'data.frame':   1115 obs. of  10 variables:
##  $ Store                    : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ StoreType                : chr  "c" "a" "a" "c" ...
##  $ Assortment               : chr  "a" "a" "a" "c" ...
##  $ CompetitionDistance      : int  1270 570 14130 620 29910 310 24000 7520 2030 3160 ...
##  $ CompetitionOpenSinceMonth: int  9 11 12 9 4 12 4 10 8 9 ...
##  $ CompetitionOpenSinceYear : int  2008 2007 2006 2009 2015 2013 2013 2014 2000 2009 ...
##  $ Promo2                   : int  0 1 1 0 0 0 0 0 0 0 ...
##  $ Promo2SinceWeek          : int  NA 13 14 NA NA NA NA NA NA NA ...
##  $ Promo2SinceYear          : int  NA 2010 2011 NA NA NA NA NA NA NA ...
##  $ PromoInterval            : chr  "" "Jan,Apr,Jul,Oct" "Jan,Apr,Jul,Oct" "" ... 
##  - attr(*, ".internal.selfref")=<externalptr>
# head(train); tail(train)
# head(test); tail(test)
train[, Date := as.Date(Date)]
test[, Date := as.Date(Date)]
store
##       Store StoreType Assortment CompetitionDistance
##    1:     1         c          a                1270
##    2:     2         a          a                 570
##    3:     3         a          a               14130
##    4:     4         c          c                 620
##    5:     5         a          a               29910
##   ---                                               
## 1111:  1111         a          a                1900
## 1112:  1112         c          c                1880
## 1113:  1113         a          c                9260
## 1114:  1114         a          c                 870
## 1115:  1115         d          c                5350
##       CompetitionOpenSinceMonth CompetitionOpenSinceYear Promo2
##    1:                         9                     2008      0
##    2:                        11                     2007      1
##    3:                        12                     2006      1
##    4:                         9                     2009      0
##    5:                         4                     2015      0
##   ---                                                          
## 1111:                         6                     2014      1
## 1112:                         4                     2006      0
## 1113:                        NA                       NA      0
## 1114:                        NA                       NA      0
## 1115:                        NA                       NA      1
##       Promo2SinceWeek Promo2SinceYear    PromoInterval
##    1:              NA              NA                 
##    2:              13            2010  Jan,Apr,Jul,Oct
##    3:              14            2011  Jan,Apr,Jul,Oct
##    4:              NA              NA                 
##    5:              NA              NA                 
##   ---                                                 
## 1111:              31            2013  Jan,Apr,Jul,Oct
## 1112:              NA              NA                 
## 1113:              NA              NA                 
## 1114:              NA              NA                 
## 1115:              22            2012 Mar,Jun,Sept,Dec
train <- train[order(Date)]
test <- test[order(Date)]
summary(train)
##      Store          DayOfWeek          Date                Sales      
##  Min.   :   1.0   Min.   :1.000   Min.   :2013-01-01   Min.   :    0  
##  1st Qu.: 280.0   1st Qu.:2.000   1st Qu.:2013-08-17   1st Qu.: 3727  
##  Median : 558.0   Median :4.000   Median :2014-04-02   Median : 5744  
##  Mean   : 558.4   Mean   :3.998   Mean   :2014-04-11   Mean   : 5774  
##  3rd Qu.: 838.0   3rd Qu.:6.000   3rd Qu.:2014-12-12   3rd Qu.: 7856  
##  Max.   :1115.0   Max.   :7.000   Max.   :2015-07-31   Max.   :41551  
##    Customers           Open            Promo        StateHoliday      
##  Min.   :   0.0   Min.   :0.0000   Min.   :0.0000   Length:1017209    
##  1st Qu.: 405.0   1st Qu.:1.0000   1st Qu.:0.0000   Class :character  
##  Median : 609.0   Median :1.0000   Median :0.0000   Mode  :character  
##  Mean   : 633.1   Mean   :0.8301   Mean   :0.3815                     
##  3rd Qu.: 837.0   3rd Qu.:1.0000   3rd Qu.:1.0000                     
##  Max.   :7388.0   Max.   :1.0000   Max.   :1.0000                     
##  SchoolHoliday     
##  Length:1017209    
##  Class :character  
##  Mode  :character  
##                    
##                    
## 
summary(test)
##        Id            Store          DayOfWeek          Date           
##  Min.   :    1   Min.   :   1.0   Min.   :1.000   Min.   :2015-08-01  
##  1st Qu.:10273   1st Qu.: 279.8   1st Qu.:2.000   1st Qu.:2015-08-12  
##  Median :20544   Median : 553.5   Median :4.000   Median :2015-08-24  
##  Mean   :20544   Mean   : 555.9   Mean   :3.979   Mean   :2015-08-24  
##  3rd Qu.:30816   3rd Qu.: 832.2   3rd Qu.:6.000   3rd Qu.:2015-09-05  
##  Max.   :41088   Max.   :1115.0   Max.   :7.000   Max.   :2015-09-17  
##                                                                       
##       Open            Promo        StateHoliday       SchoolHoliday     
##  Min.   :0.0000   Min.   :0.0000   Length:41088       Length:41088      
##  1st Qu.:1.0000   1st Qu.:0.0000   Class :character   Class :character  
##  Median :1.0000   Median :0.0000   Mode  :character   Mode  :character  
##  Mean   :0.8543   Mean   :0.3958                                        
##  3rd Qu.:1.0000   3rd Qu.:1.0000                                        
##  Max.   :1.0000   Max.   :1.0000                                        
##  NA's   :11

데이터가 흠 가게 Id는 정수형이고 다 주 5일제고 뭐...손님수는 다양하네요 500~1500명까지.... 휴일여부는 0,1로 나뉘어져있고 네..

여튼 데이터 구경은 이정도면 충분하고. 넘어갑니다.   그리고 summary함수를 통해서 또 최대/최소/최빈값등등을 보면서 대략적이나마 data distribution 형태를 좀 예측할 수 가 있지요... 




앗!!! 다음에 이어하겠습니다.

좀 더 해야하는데.. 다음 6일차때 추가하겠습니다.






























저작자 표시
신고

'데이터분석' 카테고리의 다른 글

Kaggler's Day #8  (0) 2016.06.10
Kaggler's Day #7  (0) 2016.06.08
Kaggler's Day #6  (0) 2016.05.31
Kaggler's Day #5  (0) 2016.05.27
Kaggler's Day #3  (0) 2016.05.16
Kaggler's Day #1  (0) 2016.05.12
Posted by 억사마